(x^2-19x)+(80-2x)=180

Simple and best practice solution for (x^2-19x)+(80-2x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-19x)+(80-2x)=180 equation:



(x^2-19x)+(80-2x)=180
We move all terms to the left:
(x^2-19x)+(80-2x)-(180)=0
We add all the numbers together, and all the variables
(x^2-19x)+(-2x+80)-180=0
We get rid of parentheses
x^2-19x-2x+80-180=0
We add all the numbers together, and all the variables
x^2-21x-100=0
a = 1; b = -21; c = -100;
Δ = b2-4ac
Δ = -212-4·1·(-100)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-29}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+29}{2*1}=\frac{50}{2} =25 $

See similar equations:

| 2x(2x1)=3x+5 | | 52-x=-19 | | 41=2d-6 | | 3x-6*8=120 | | 25x+36=85 | | 44+32+32+x=180 | | 64+73+x+50=180 | | 5x+3=-x-13 | | 4.3z-2.5z=-14.4 | | -3.1+4.6r=-6.78 | | -16+4j=-34 | | -16x^2+510x=0 | | 3x-6•8=120 | | -13(n+15)=-2 | | 1/2(4x-8)=2x-4 | | (9x-2)+38+63=180 | | y=∣10∣−5 | | 5+y=7y=2 | | -4x+7=5x-112 | | 3/6w=30 | | 6x=15=6x+15 | | 4x+13=2x-5 | | 26x-19=16x+13 | | 55=11(x-8) | | x+90+55+35=180 | | 2+x/16=8 | | 25=-(-8x-6)-3(x+12) | | −2(d−4)=−10 | | 3=z-11z=14 | | 8x+4(x-8)=11x-5 | | √x+40=8 | | 5r-3=3r+17 |

Equations solver categories